WARNING – This excerpt is intended for use by medical, legal, social service, and law enforcement professionals. It contains graphic images that some may find disturbing or offensive. Minors and/or nonprofessionals should not be allowed to access this material.

Child Abuse

Pocket Atlas Series

Volume Three

Head Injuries

STM Learning, Inc.

Leading Publisher of Scientific, Technical, and Medical Educational Resources

Saint Louis
www.stmlearning.com
OUR MISSION

To become the world leader in publishing and information services on child abuse, maltreatment, diseases, and domestic violence.

We seek to heighten awareness of these issues and provide relevant information to professionals and consumers.

A portion of our profits is contributed to nonprofit organizations dedicated to the prevention of child abuse and the care of victims of abuse and other children and family charities.
Child Abuse
Pocket Atlas Series

Volume Three
Head Injuries

Randell Alexander, MD, PhD
Professor of Pediatrics and Chief
Division of Child Protection and Forensic Pediatrics
Department of Pediatrics
University of Florida
Jacksonville, Florida

Angelo P. Giardino, MD, PhD
Vice President/Chief Medical Officer
Medical Affairs
Texas Children’s Health Plan
Clinical Professor, Pediatrics and Section Chief
Academic Pediatrics
Department of Pediatrics
Baylor College of Medicine
Houston, Texas

Debra Esernio-Jenssen, MD, FAAP
Professor of Pediatrics
University of Florida at Gainesville
Medical Director
Child Protection Team
Gainesville, Florida

Jonathan D. Thackeray, MD, FAAP
Physician
The Center for Family Safety and Healing
Division of Child and Family Advocacy
Department of Pediatrics
Nationwide Children’s Hospital
Columbus, Ohio

Robert Parrish, JD
Managing Attorney
Second District Office of the Guardian ad Litem
Layton, Utah

David L. Chadwick, MD
Director Emeritus
Chadwick Center for Children and Families
Children’s Hospital - San Diego
Adjunct Associate Professor
Graduate School of Public Health
San Diego State University
San Diego, California

STM Learning, Inc.
Leading Publisher of Scientific, Technical, and Medical Educational Resources
Saint Louis
www.stmlearning.com
CONTRIBUTORS

Randell Alexander, MD, PhD
Professor of Pediatrics and Chief
Division of Child Protection and Forensic Pediatrics
Department of Pediatrics
University of Florida
Jacksonville, Florida

Deniz Altinok, MD
Associated Professor in Radiology
Wayne State University
Pediatric Radiologist, Pediatric Neuroradiologist
Detroit Medical Center
Children’s Hospital of Michigan
Detroit, Michigan

Gail V. Benton, DDS
Clinical Assistant Professor of Pediatric Dentistry
LSU School of Dentistry
Audrey Hepburn Children at Risk Evaluation (CARE) Center
Children’s Hospital
New Orleans, Louisiana

Scott A. Benton, MD, FAAP
Director of Pediatric Forensic Medicine
Clinical Associate Professor of Pediatrics
LSU & Tulane Departments of Pediatrics
Audrey Hepburn Children at Risk Evaluation (CARE) Center
Children’s Hospital
New Orleans, Louisiana

Bradford W. Betz, MD
Advanced Radiology Services, P.C.
Grand Rapids, Michigan
Medical Director, Department of Radiology
DeVos Children’s Hospital
Grand Rapids, Michigan
Associate Clinical Professor of Radiology
Michigan State University
East Lansing, Michigan

Gil Binenbaum, MD, MSCE
Attending Surgeon
The Children’s Hospital of Philadelphia
Philadelphia, Pennsylvania
Assistant Professor of Ophthalmology
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, Pennsylvania

Marguerite M. Caré, MD
Assistant Professor of Pediatrics Radiology
Division of Neuroradiology
Cincinnati Children’s Hospital Medical Center
Cincinnati, Ohio

Brian J. Forbes, MD, PhD
Associate Professor of Ophthalmology
Hospital of the University of Pennsylvania
The University of Pennsylvania School of Medicine, The Children’s Hospital of Philadelphia
Philadelphia, Pennsylvania

Detective Bruce Foremny
Glendale Police Department (retired)
Criminal Investigator
Arizona Department of Juvenile Corrections
Bruce Foremny Consulting LLC
Litchfield Park, Arizona

Lori D. Frasier, MD, FAAP
Professor of Pediatrics
Chief, Division of Child Abuse Pediatrics
Penn State Milton S. Hershey Children’s Hospital
Hershey, Pennsylvania

Todd C. Grey, MD
Chief Medical Examiner
State of Utah
Adjunct Associate Professor of Pathology
University of Utah School of Medicine
Salt Lake City, Utah

Karen Kirhofer Hansen, MD
Associate Professor of Pediatrics
University of Utah
Pediatrician, Safe and Healthy Families Team
Primary Children’s Medical Center
Salt Lake City, Utah
Contributors

Gary L. Hedlund, DO
Associate Professor of Radiology
University of Utah School of Medicine
Pediatric Neuroradiologist
Chairman, Department of Medical Imaging
Primary Children's Medical Center
Salt Lake City, Utah

Peter Kan, MD
Resident, Neurosurgery
Department of Neurosurgery
University of Utah
Salt Lake City, Utah

John P. Kenney, DDS, MS, D-ABFO, FAAPD, FACP
President, Owner
Children's Dentistry in Park Ridge
Park Ridge, Illinois
Forensic Consultant
US DOD, Joint POW-MIA Accounting Command, Central Identification Laboratory
DOD Joint Base Pearl Harbor
Hickham, Hawaii

Lynn Douglas Mouden, DDS, MPH, FICD, FACP
Chief Dental Officer
Centers for Medicare & Medicaid Services
US Department of Health and Human Services
Baltimore, Maryland

Vincent J. Palusci, MD, MS
Helppie Endowed Professor of Pediatrics
Wayne State University School of Medicine
Medical Director, Child Protection Center
Children's Hospital of Michigan
Detroit, Michigan

Robert Parrish, JD
Managing Attorney
Second District Office of the Guardian ad Litem
Layton, Utah

Robert T. Paschall, MD
Assistant Professor of Pediatrics
Washington University School of Medicine
Saint Louis, Missouri
Medical Director, Child Protection Program
Saint Louis Children's Hospital
Saint Louis, Missouri

Gregory A. Schmunk, MD, FACP, FASCP
Forensic Pathologist
Polk County Medical Examiner
Des Moines, Iowa

Andrew Sirotak, MD, FAAP
Professor of Pediatrics and Vice Chair for Faculty Affairs
Department Head, Child Abuse and Neglect
University of Colorado School of Medicine
Director, Child Protection Team
Children's Hospital Colorado
Aurora, Colorado

Wilbur L. Smith, MD, PhD
Professor and Chair
Department of Radiology
Wayne State University
Detroit, Michigan

David A. Start, MD
Forensic Pathologist
Spectrum Health—Blodgett Campus
Department of Pathology
Medical Examiner
Kent and Ottawa County
Grand Rapids, Michigan

Marion L. Walker, MD
Professor of Neurological Surgery
Chairman, Division of Pediatric Neurosurgery
University of Utah
Primary Children's Medical Center
Salt Lake City, Utah
Preface

As more communities work to develop effective methods for recognizing and treating victims of abusive head trauma, investigating cases, protecting victims from further harm, prosecuting offenders, and pursuing education and prevention efforts, there has been a growing interest in educating and training the professionals involved in all phases of response to this problem. The time has come to synthesize what we know, what questions remain, and what scientific studies still need to be done. It is time to share information in an organized manner among professionals working in the field in order to provide improved recognition, treatment, investigation, prosecution, education, and prevention of this deadly form of abuse.

This text is designed to serve as a reference for medical, investigative, legal, social service, and prevention professionals. All of these disciplines are affected by AHT in children and all have made notable progress in handling the results of child maltreatment in general. Prevention efforts have also been cultivated, focusing specifically on avoiding the development of patterns of child abuse within the family. The goal of educating all professionals is to help children and families with the corollary of improving society’s concern and care for the most helpless of its citizens.

We have sought to offer a balanced approach to the problem of AHT while exploring current efforts and recommendations to address the concerns of professionals. It is hoped that this publication will become a reliable reference for professionals in the medical, investigative, legal, social service, and prevention areas.

Randell Alexander, MD, PhD
Robert N. Parrish, JD
Contents in Brief

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unintentional Head Injuries</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Abusive Head Trauma</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Associated Injuries</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>Ophthalmology</td>
<td>101</td>
</tr>
<tr>
<td>5</td>
<td>Oral Injuries</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>Medical Mimics</td>
<td>127</td>
</tr>
<tr>
<td>7</td>
<td>Neuroradiology</td>
<td>151</td>
</tr>
<tr>
<td>8</td>
<td>Neurosurgery</td>
<td>169</td>
</tr>
<tr>
<td>9</td>
<td>Outcomes</td>
<td>179</td>
</tr>
<tr>
<td>10</td>
<td>Pathology</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>Investigation</td>
<td>223</td>
</tr>
</tbody>
</table>
With copyright.com, you can quickly and easily secure the permissions you want.

Simply follow these steps to get started:

— Visit copyright.com and enter the title, ISBN, or ISSN number of the publication you’d like to reuse and hit “Go”
— After finding the title you’d like, choose “Pay-Per-Use Options”
— Enter the publication year of the content you’d like to reuse
— Scroll down the list to find the type of reuse you want to request
— Select the corresponding bubble and click “Price & Order”
— Fill out any required information and follow the prompts to acquire the proper permissions to reuse the content that you’d like

For questions about using the service on copyright.com, please contact:

Copyright Clearance Center
222 Rosewood Drive
Danvers, MA 01923
Phone: +1-(978) 750-8400
Fax: +1-(978) 750-4470

Additional requests can be sent directly to info@copyright.com.

About Copyright Clearance Center

Copyright Clearance Center (CCC), the rights licensing expert, is a global rights broker for the world’s most sought-after books, journals, blogs, movies, and more. Founded in 1978 as a not-for-profit organization, CCC provides smart solutions that simplify the access and licensing of content that lets businesses and academic institutions quickly get permission to share copyright-protected materials, while compensating publishers and creators for the use of their works. We make copyright work. For more information, visit www.copyright.com.
Contents in Detail

Chapter 1: Unintentional Head Injuries

- Motor Vehicles 2
 - Passenger Fatality 2
 - Traffic-Related Pedestrian Fatality 3
 - Non-Traffic-Related Pedestrian Fatality 4
- Falls Onto Children 6
 - By Caregiver 6
 - By Horse 7
 - By Television Set 8

Chapter 2: Abusive Head Trauma

- Head Injuries 18
 - Rotational Injuries 52
 - Subdural Hematoma 52
 - Space-Occupying Subdural Hematoma 55
 - Respiratory Distress 57
 - Subdural and Retinal Hemorrhages 57
 - Blunt Force Trauma 59
 - Skull Fracture and Cerebellar Hematoma 59
 - Brain Injury and Long Bone Fractures 62
 - Bruises to Head and Chest 64
 - Head and Abdominal Trauma 66
 - Missed Abusive Head Trauma 69
- Multiple Fractures and Findings 72
 - Undetermined Manner of Death 72
 - Subdural and Retinal Hemorrhages ... 74
 - Skull and Rib Fractures 74
 - Bruises to Head 78
 - Subdural Hematoma 78
- References 80

Chapter 3: Associated Injuries

- Accidental Trauma 89
 - Isolated Abrasions 89
- Patterned Injuries 89
 - Slap Marks 89
 - Intracranial Trauma 90
Contents in Detail

Skull Fractures and Hematoma ... 91
Bite Marks ... 91
Marks From Looped Objects .. 92
Burns ... 93
Iron ... 93
Hair Dryer ... 93
Area of Injury .. 94
Scalp ... 94
Subgaleal Hematomas ... 94
Ears, Eyes, and Periorbital Issues 95
Hematoma Resulting From Fall 95
Blunt Trauma to Eyes ... 95
Blunt Impact Trauma ... 96
Osteogenesis Imperfecta ... 97
Mouth and Oral Cavity ... 97
Torn Frenulum .. 97
Condyloma Acuminata .. 97
Neck ... 98
Suction Ecchymoses Resulting From Sexual Assault 98
Assault ... 98
Ligature Marks .. 99
References ... 100

CHAPTER 4: OPHTHALMOLOGY ... 101
Unresponsive Victim of SBS/AHT 103
Seizures Caused by SBS/AHT .. 105
Hematoma With SBS/AHT ... 106
Retinal and Macular Hemorrhages 107
Papilledema ... 107
Retinal Hemorrhage ... 108
Residual Findings .. 109
Injuries as Result of AHT .. 109

CHAPTER 5: ORAL INJURIES .. 111
Avulsion ... 116
Accidental Injury .. 116
Multiple Inflicted Injuries ... 116
Burns .. 116
Electrical Burn ... 116
Branding of Multiple Surfaces 117
Bruises .. 117
Pattern Injuries ... 118
Bite Marks ... 119
Animal Bite Marks .. 119
Human Bite Marks .. 120
Sexual Abuse ... 125
Multiple Injuries 125
Ecchymosis 126
Neglect .. 126
Caries ... 126

CHAPTER 6: MEDICAL MIMICS 127
Newborn Disorders and Birth Trauma 130
Hemorrhagic Disease of the Newborn 130
Central Nervous System Infections 131
Herpes Simplex Virus With Meningoencephalitis 131
Bacterial Meningitis 132
Central Nervous System Malignancies 132
Lymphoblastic Leukemia 132
Neuroblastoma 133
Central Nervous System Malformations 134
Arachnoid Cyst 134
Hereditary Hemorrhagic Telangiectasia 134
Connective Tissue Disorders 137
Osteogenesis Imperfecta 137
Ehlers-Danlos Syndrome Type II 138
Inherited Bleeding Disorders 139
Hemophilia A 139
Hemophilia B 139
Metabolic Disturbances 140
Hypernatremic Dehydration 140
Metabolic Diseases 141
Glutaric Aciduria Type I 141
Hemophagocytic Lymphohistiocytosis 144
Nutritional Deficiency 146
Rickets Appearing as Abusive Head Trauma 146
References 148

CHAPTER 7: NEURORADIOLOGY 151
Intracranial Hemorrhages 152
Hyperacute Subdural Hematoma 152
Coexistent Skeletal Injury 152
Extra-Axial 153
Subarachnoid 154
Epidural Hematoma 155
Edema .. 155
Diastatic Bone Structure 155
Hypoxic-Ischemic Injury 156
Subdural Hemorrhage 156
Venous Thrombosis 158
Extracranial Injuries 159
Skull and Chest Fractures 159
Injuries Not Involving the Head. ... 161
Rib Fractures .. 161
Callus Formation ... 161
Abdominal Injury .. 162
Bowel ... 162
Distention .. 163
Metaphyseal Fracture .. 164
Humerus ... 164
Differential Diagnoses .. 165
Suspected Metabolic Disease ... 165
Hemophagocytic Lymphohistiocytosis 166
Traumatic Vaginal Delivery .. 167

Chapter 8: Neurosurgery .. 169
Skull Fracture .. 170
Brain Laceration ... 170
Epidural Hematoma .. 171
Overlying Skull Fracture ... 171
Depressed Skull Fracture ... 171
Subdural Hematoma ... 172
Raised Intracranial Pressure ... 172
Swelling and Contusions ... 173
Injuries of Different Ages ... 174
Cerebral Hypoxia-Ischemia ... 174
Subarachnoid Hemorrhage ... 175
Tentorial Subdural Hematoma 175
Encephalomalacia .. 175
Left Occipital Area .. 175
Hyperdense Cerebellum .. 176
Strangulation .. 176
Reversal Sign .. 176
Coronal CT Scan ... 176
Infarction ... 176
Strangulation .. 176
Left Hemisphere, Cerebellum, and Right Temporal Lobe 177
Contusion .. 177
Right Frontal Lobe .. 177
References .. 178

Chapter 9: Outcomes .. 179
Physical Outcomes ... 180
Contact Injury .. 180
Subdural Hematomas With Enlarging Head Circumference ... 181
Physical and Cognitive Outcomes 182
Cognitive Delay ... 182
Visual Outcomes .. 184
Rotational Injuries ... 186
Morbid and Visual Outcomes 187
 Rotational Injuries .. 187
Morbid and Developmental Outcomes 190
 Delayed Death ... 190
Morbid Outcome ... 191
 Rotational Injuries .. 191
References .. 192

Chapter 10: Pathology 195
Unintentional Injuries 199
 Fall From a Chair .. 199
 Drowning .. 200
 Motor Vehicle Crash 200
Conditions That Mimic Abusive Head Trauma 202
 Suspicions of Shaking 202
 Laryngotracheobronchitis ("Croup") 203
 Tracheobronchitis ... 204
 Bronchopneumonia 205
 Vacuum Extraction 205
 In Utero Subdural Hemorrhage 205
Abusive Head Trauma 206
 Impact Trauma .. 208
 Shaking Trauma .. 210
 Shaken Impact Trauma 218
Undetermined Manner of Death 219
 Intact Bridging Veins 219
 Craniocerebral Trauma 219
 Cerebral Edema .. 220
Sudden Infant Death Syndrome 221

Chapter 11: Investigation 223
Background Information 223
Clinical Presentation and Investigation 226
Conclusion .. 228
Clinical Presentation and Investigation 229
Child Abuse

Pocket Atlas Series

Volume Three

Head Injuries
Unintentional Head Injuries

Todd C. Grey, MD

The patterns of injury seen in accidental lethal head trauma are striking. The typical findings in a case of immediately or rapidly fatal accidental head injury, in which the child is pronounced dead at the scene or within a short time of arriving at the hospital, have an array of cutaneous, skeletal, and intracranial findings. While the extent of injury in the various structural layers of the head may at times be discrepant, there is always something in the pattern and extent of injury that is indicative of a significant amount of force being delivered to the head. What is even more striking is the clear correlation between the severity of injury and the mechanism of injury provided in the history. The injuries present in the patient are reasonable given the explanation provided for these injuries, which is in sharp contrast to the often trivial mechanisms offered as an explanation for a child’s injuries in cases of abusive trauma. The cases in this chapter are graphic in their presentation but serve to emphasize the dramatic and distinct nature of the injuries. It is also notable that tremendous forces are involved when accidental fatal head trauma occurs in the case of motor vehicle collisions, a horse falling on a child, or an adult falling down stairs and landing on a child.
Abusive head injury (AHT) has several synonyms including non-accidental head trauma or inflicted traumatic brain injury. Terms such as shaken baby syndrome and shake impact syndrome are often used as well, but they are not as inclusive as the terms aforementioned. The American Academy of Pediatrics noted in their policy statement that the intention of leaning away from terms such as shaken baby syndrome, “is not to detract from shaking as a mechanism of abusive head trauma but to broaden the terminology to account for the multitude of primary and secondary injuries that result from abusive head trauma.”1,2 Regardless of the label, abusive head trauma frequently results in serious and permanent brain damage. The forces to which the infants’ brains are subjected tend to be severe. The prevalence of abusive head trauma is highest in children younger than 2 years of age, probably because the size of an older infant makes it difficult to create the extreme forces necessary to inflict such severe injury to the brain and its coverings. The incidence of abusive head trauma is estimated at approximately 14-30 per 100 000 children within the first year of life; the mean age of accidental injuries is 2.5 years whereas the abused are on average 0.7 years (8 months) old.3-5 Abusive head trauma in infants is more common than all childhood cancers and type 1 diabetes.1

When evaluating abusive head trauma, it is best to consider each injury individually since it involves the internal layers of tissue as well as those surrounding the brain. While this is a logical approach to describing the injuries, it is important to recognize that multiple anatomical areas of injury are the rule, not the exception.
External to the brain, the scalp is often the site of a subgaleal hemorrhage after impact (Figure 2-1). Hemorrhage within the scalp creates the proverbial “egg” on the head. The subgaleal space is a large potential space; therefore, the blood often flows into a dependent region. This explains why the palpable or visible bump is not always in the region of the trauma. Unless the child has a bleeding disorder or some other abnormality, the presence of a subgaleal hematoma always suggests that there was an impact injury. There is another, less common variant of scalp injury: the cephalhematoma, which is a hemorrhage in the subperiosteal space, external to the bone but localized anatomically to the bone since it is confined by the periosteal layer of each bone of the skull. Cephalhematomas are rarely seen in child abuse and always remain local to the area of hemorrhage or impact.

A patient presenting with skull fracture (Figure 2-2), shows evidence of significant traumatic injury; however, injuries following uncomplicated normal vaginal delivery have (rarely) included skull fractures. A tender soft tissue swelling associated with such an injury points to a recent impact, but often injuries such as cephalohematoma will take time to become evident and resolve over the course of several weeks.6

Figure 2-1. Multifocal contusions involving the left frontal and parietal lobe with evidence of subarachnoid hemorrhage and subgaleal hematoma (white arrow).

Figure 2-2. Lateral view of the skull demonstrates linear diastatic parietal fracture.
As a whole, young patients who present to a health care provider with traumatic injuries often have common events in their history, which often include a recount of a “short fall” (>90cm), falling off a couch, etc. Height from fall, however, is often an inaccurate estimate on the part of parents and the most reliable estimate of short falls are in-hospital falls. Analysis of short falls by Helfer et al, compared the results of short fall events in the hospital versus at home. In the home group (n=176) there were 2 skull fractures whereas in the hospital (n=57) there was only 1 such fracture. None of these fractures was diastatic or defined as greater than 1 mm in width (Figure 2-2). No children suffered neurological complications as a result of this head injury. The best current estimate of mortality for short falls affecting infants and children is near zero.

Certain fractures are found to occur significantly more often in AHT, these include: multiple or complex fractures, depressed or wide diastatic fractures, those with involvement of more than one bone and those involving other than the parietal bone. Skull fractures typically associated with abusive head trauma are similar to those due to high velocity impact. These fractures are long (longer than 5 cm), stellate (many limbs from one point of impact), or diastatic (the edges of the fracture are widely spread). It is possible to have skull fracture from a short fall and in rare cases, some overlap of features between high impact and short fall injuries may occur; however, the presence of long, stellate, or diastatic fractures should lead to enhanced suspicion if they are ascribed to a short fall.

The epidural hematoma is an unusual injury in child abuse (Figure 2-3). This type of hematoma occurs because of bleeding, usually arterial, into the epidural space between the inner table of the skull and the dura mater. This lesion is classically associated with a lucid interval and skull fracture. The theory of the lucid interval is that the initial impact causes the fracture and concussion, rendering the victim unconscious. The subsequent bleeding from ruptured branches of the middle meningeal artery then causes the epidural hematoma, which grows rapidly, owing to arterial (as opposed to venous) bleeding, and causes further deterioration of mental status after the patient stabilizes from the concussion.

The subdural hematoma (SDH) is a hallmark of abusive head trauma.
injury and is the most frequently diagnosed intracranial injury in child abuse. More specifically, subdural supratentorial convexity and interhemispheric SDH are seen significantly more often in nonaccidental head injury. SDH in accidental injury are uncommon, but when it does occur it appears to be focal and adjacent to the site of impact. Bleeding in the subdural space occurs because of a rupture of the bridging veins that drain blood from the surface of the brain to the dural venous sinuses. The principal route of drainage of surface veins is to the sagittal sinus. As a result, subdural hematomas due to child abuse most often occur over the convexities of the parietal, frontal, and occipital lobes (Figures 2-4-a and b). Frequently, subdural hematomas can be identified as new or old depending upon the characteristics of the blood degradation products on a computed tomographic (CT) scan or magnetic resonance imaging (MRI) scan (Figure 2-5). The relative insensitivity of CT scans for definition of anatomical spaces has led to some confusion in older literature, particularly regarding benign subdural hygromas, most of which are merely enlarged or prominent subarachnoid spaces, and are of no clinical or pathological significance.

Bleeding into the subarachnoid space occurs when the vessels are ruptured between the arachnoid membrane and the pia mater. The subarachnoid space readily communicates with the cerebrospinal fluid (CSF) cisterns and the spinal subarachnoid space. Blood obtained on spinal taps in abused children can be used to indicate subarachnoid hemorrhages (SAH). Subarachnoid hemorrhages can be identified on imaging by bleeding into the cerebrospinal fluid cisterns surrounding the brain or by a serpiginous, gyriform pattern of hemorrhage. Subarachnoid blood also accumulates along the cerebral tentorium or within the thecal sack over the spine. Subarachnoid hemorrhages are very important clinically because there is almost universal agreement among experts that they have distinct symptoms. Adults with subarachnoid hemorrhages, most commonly victims of rupture of an intracranial aneurysm, describe a typical “thunderclap” headache as the worst of their lives. In infants, the symptoms manifest as extreme irritability, discomfort, and pain. An infant with a subarachnoid hemorrhage is highly unlikely to act normally.

Parenchymal injuries to the brain include both bland and hemorrhagic contusions. There are injuries to the surface of the brain from an impact mechanism similar to a contusion elevation in the body. There is a tendency for the brain to suffer contrecoup injuries, an injury opposite the side of impact. The contrecoup injury is usually larger than the direct impact injury. The other characteristic hemorrhagic injury to the brain is the diffuse axonal injury (DAI), an injury to the axons of the neurons that has a prepotdivean at areas of differing physical density in the brain, such as the watershed areas along the cortex or the deep gray and pericollosal white matter areas. Parenchymal injuries of the brain tend to be rapidly and severely symptomatic (Figure 2-6-a to c).
Chapter 2: Abusive Head Trauma

Figure 2-4-a. Axial CT of the head shows acute and chronic bilateral subdural hematoma.

Figure 2-4-b. Small left frontal acute subdural hematoma (black arrow) with hemorrhagic shearing injury to left internal capsule (white arrow).

Figure 2-5. GRE T2W image shows large bilateral chronic subdural hematoma with new acute subdural hemorrhage on the left (black arrow) with blood sediment level.

Figure 2-6-a. Axial flair T2W image shows multiple foci of shearing injury.

Figure 2-6-b. Axial GRE T2W images obtained immediately after trauma demonstrates no obvious evidence of hemorrhage.

Figure 2-6-c. Axial DWI image of the brain shows diffusion restriction along the corpus callosum (black arrow) (shearing injury) and right posterior parietal subcortical white matter (white arrow) (contusion).
The final serious injury of the brain ascribable to child abuse is hypoxic ischemic injury. This injury occurs due to a complex interaction of events that leads to either a lack of perfusion of brain tissue or a lack of sufficient oxygenation of the blood perfusing the brain tissue (Figure 2-7-a and b). As the brain tissue begins to die, a complex event called a neuronal cascade begins, further increasing intracranial pressure and compromising both blood flow and oxygen delivery. The visible result is cerebral edema, which, in its extreme, results in a pattern of injury known as the “bad black brain” or “reversal sign” (Figure 2-8). In this imaging picture the structures of the brain are obscured and the ventricles are often compressed due to the increased intracranial pressure. This results in an extremely poor prognosis.

Type of injury, age, and presentation of the patient help to determine the best mode of imaging to perform. Children with skull fractures, clinical abnormalities, and symptoms of intracranial injury should be evaluated with an immediate noncontrast CT scan of the head. If this CT does not indicate a lesion requiring immediate neurosurgical intervention, and the clinical presentation requires further analysis thus an MRI scan of the head should be performed. This MRI series should include T1-weighted and T2-weighted sequences with inversion recovery and gradient echo sequences (Figure 2-9). In addition, diffusion-weighted sequences (Figure 2-10-a) help to elucidate the presence of acute cerebral injury. Additional MR

![Figure 2-7-a](image1.png)
Figure 2-7-a. Axial CT of head shows small left frontal and interhemispheric acute subdural hematoma with mass effect.

![Figure 2-7-b](image2.png)
Figure 2-7-b. Diffusion-weighted image demonstrates extensive diffusion restriction secondary to likely combination of shearing injury and hemispheric infarct of left frontal temporal parietal lobes.

![Figure 2-8](image3.png)
Figure 2-8. Diffuse low attenuation involving the bilateral frontal temporal parietal gray and white matter secondary to nonaccidental trauma (reversal sign).
spectroscopy (Figure 2-10-b), MRA of the circle of Willis, and MRV of the dural venous sinuses will be helpful to include in the protocol and should be strongly considered. Diffusion tensor imaging is a new and promising application of MRI, which is a form of DWI and help better evaluation of white matter tracts on the bases of intrinsic directionality (anisotropy) of water diffusion in brain. Perfusion CT (Figure 2-11) and MRI is also important potential application of advanced neuroimaging in AHT, which allow us to understand underlying vascular injury secondary to AHT.

Figure 2-9. Susceptibility-weighted image shows evidence of blood.

Figure 2-10-a. DWI (diffusion-weighted Image) shows citotoxic edema (white) within the left cerebral hemisphere.

Figure 2-10-b. MR Spectroscopy obtained from left cerebral hemisphere shows evidence of lactate (arrow) in a patient with non-accidental trauma; this indicates poor prognosis.

Figure 2-11. CT perfusion image after single I.V. injection of contrast with volumetric scanner shows cerebral blood volume, cerebral blood flow (ml/100g/min) and mean transit time.
INDEX

A
abdominal injury, 66–68
 bowel, 162
distention, 163
metaphyseal fracture, 164
abuse, child. See child abuse
abuse, sexual. See sexual abuse
abusive caregivers, 81
abusive head trauma (AHT), 11–17, 71, 127–129, 151, 206–207
advanced neuroimaging in, 17
blunt force trauma. See blunt force trauma
bronchopneumonia, 205
diagnosis of, 127
disorders/conditions, 127–129, 202–205
evaluation of, 11
impact trauma, 208–209
incidence of, 11
injuries as result of, 109–110
in utero subdural hemorrhage, 205
key indicators of, 197
laryngotracheobronchitis, 203
multiple fractures and findings, 72–79
outcomes of, 179–192
rotational injuries. See rotational injuries
SDH, 13–14
shaking trauma, 210–218
subdural hematomas in, 179
suspicions of shaking, 202
tracheobronchitis, 204
accidental injury, 116
acute epidural hematoma, 41, 171
acute hemorrhage, 57
AHT. See abusive head trauma (AHT)
animal bite marks, 119–120
arachnoid cyst, 134
assault, 62, 64, 98, 195
sexual, 60
associated injuries
accidental trauma, 89
area of injury, 94–99
bite marks, 91
patterned injuries, 89–93
avulsion, 111, 116

B
bacterial meningitis, 127, 132
bad black brain, 16
basal ganglia, 47, 158
bilateral periorbital ecchymosis, 85
bite marks, 83, 91, 112–115
animal, 119–120
human, 120–124
impression of, 113
bleeding in subarachnoid space, 14
blood degradation, 14
blunt force trauma
 brain injury and longbone fractures, 62–64
 bruises to head and chest, 64–65
to eyes, 95–96
 head and abdominal trauma, 66–68
missed abusive head trauma, 69–71
skull fracture and cerebellar hematoma, 59–61
blunt impact trauma, 96
bowel, abdominal injury, 162
brain injury, 26–28, 46, 169, 174
 ischemic and metabolic, 179
 and longbone fractures, 62–64
brain laceration, 170
bronchopneumonia, 205
bruises, 117–118
burns, 116–117
 branding of multiple surfaces, 117
 electrical burn, 116
 by hair dryer, 93
 by iron, 93

C
callus formation, 161
cardiopulmonary resuscitation (CPR), 210
caries, 126
central nervous system (CNS) infections, 131–132
 injuries, 169
 malformations, 128, 134, 135–136
 malignancy, 128, 132, 133
 cephalhematomas, 12, 27, 51
 cerebellar hematoma, 59–61
 cerebral convexities, 25
 cerebral edema, 16, 50, 220
 cerebral hypoxia-ischemia, 174
cerebrospinal fluid (CSF) cisterns, 14
 chest fractures, 159–160
 child abuse, 12, 151
 epidural hematoma in, 13
 hypoxic ischemic injury in, 16
 subdural hematomas due to, 14
 child protective services (CPS), 69, 145
 clinical outcomes, 179
CNS. See central nervous system (CNS)
 coexistent skeletal injury, 152
 cognitive delay, 182–183
 condyloma acuminata, 97
 connective tissue disorders, 128
 Ehlers-Danlos syndrome type II, 138
 osteogenesis imperfecta, 137
 contact injury, 180
 contrecoup contusions, 195
contrecoup injury, 14
 contusion, 177
 scalp, 8
 subgaleal, 8
corpus callosum, 15, 48, 69
cortical laminar necrosis, 45
CPR. See cardiopulmonary resuscitation (CPR)
CPS. See child protective services (CPS)
craniocerebral trauma, 219
CSF cisterns. See cerebrospinal fluid (CSF) cisterns

D
DAI. See diffuse axonal injury (DAI)
delayed death, 190
developmental outcomes, delayed death, 190
diastatic bone fracture, 155
diastatic fracture, 32
diffuse axonal injury (DAI), 14, 198
diffuse hyperintensity, 45
distention, abdominal injury, 163
drowning, 200

E
echymosis, 81, 83–85, 126, 146
edema, 155
Ehlers-Danlos syndrome type II, 138
electrical burn, 116
emergency medical services (EMS), 55
EMS. See emergency medical services (EMS)
encephalomalacia, 55, 57, 62, 175
epidural hematoma, 6, 41, 155, 171
causes of, 13
 in child abuse, 13
 epidural hemorrhage, 31, 34, 51
 extensive subgaleal contusion, 2
 extra-axial, intracranial hemorrhages, 153
 extracranial injuries, skull and chest fractures, 159–160
 eyes
 blunt trauma to, 95–96
 lateral view of, 104
Index

F
falls, children
 by caregiver, 6
 from chair, 199
 by horse, 7
 by television set, 8–9
FLAIR sequences. See fluid attenuating inversion recovery (FLAIR) sequences
fluid attenuating inversion recovery (FLAIR) sequences, 74–75
fontanelle, 40
fracture, 13
 chest, 159–160
 diastatic, 32
 diastatic bone, 155
 long bone, 62–64
 metaphyseal, 164
 rib, 161
 skeletal, 94
 skull. See skull fracture
frenulum labii superioris, 20
frontal temporal parietal lobes, 16
G
glutaric aciduria type I, 141–143
H
head injuries, 18–51, 66–68
head, structural layers of, 1
hematoma, 91
hemiparesis, 184
hemispheric cerebral edema, 184
hemophagocytic lymphohistiocytosis (HLH), 144–145, 166
hemorrhage, 106
 acute, 57
 epidural, 31, 34, 51
 intracranial. See intracranial hemorrhages
 retinal, 57–58
 subdural, 57–58, 156–157
hemorrhagic diseases of newborn, 127
hemosiderin, 24
hereditary hemorrhagic telangiectasia (HHT), 135–136
HHT. See hereditary hemorrhagic telangiectasia (HHT)
HLH. See hemophagocytic lymphohistiocytosis (HLH)
 homonymous hemianopia, 184
 human bite marks, 120–124
 hyperacute subdural hematoma, 152
 hyperdense cerebellum, 176
 hyperdense (acute) hemorrhagic contusion, 28
 hypernatremic dehydration, 140
 hypoxic ischemic injury, 16
 subdural hemorrhage, 156–157
 venous thrombosis, 158
I
impact trauma, 208–209
incised wound, 83
infarction, 176–177
inherited bleeding disorders, 129
 hemophilia A, 139
 hemophilia B, 139
injuries
 abdominal. See abdominal injury
 contrecoup, 14
 diffuse distribution of, 111
 extracranial, 159–160
 infliction of, 195
 lip, 87
 parenchymal, 14
 patterns of, 1, 84
 rib fractures callus formation, 161
 unintentional. See unintentional injuries
intact bridging veins, 219
intracranial hemorrhages
 coexistent skeletal injury, 152
 diastatic bone fracture, 155
 edema, 155
 epidural hematoma, 155
 extra-axial, 153
 hypoxic-ischemic injury, 156–157
 subarachnoid, 154
intracranial injury, 16
intracranial pressure, 62, 172
intracranial trauma, 90
intraocular inflammation, 101
intraoral condyloma, 87
intraretinal hemorrhages, 105
in utero subdural hemorrhage, 205
investigation
 background information, 223–225
 clinical presentation and, 226–234
 isolated abrasions, 89
L
laryngotracheobronchitis, 203
ligature marks, 99
long bone fractures, brain injury
and, 62–64
lucid interval theory, 13
lymphoblastic leukemia, 132

M
metabolic diseases, 129, 165
glutaric aciduria type I, 141–143
metabolic disturbances, 129
hypernatremic dehydration, 140
metaphyseal fracture, 164
morbid outcomes, rotational
injuries, 191–192
motor vehicles
non–traffic-related pedestrian
fatality, 4, 5
passenger fatality, 2
traffic-related pedestrian fatality, 3
multiple inflicted injuries, 116

N
neck, 98
neuroblastoma, 133
neuroradiology, intracranial
hemorrhages, 152
neurosurgery
contusion, 177
ten cephalomalacia, 175
tepidural hematoma, 171
hyperdense cerebellum, 176
infarction, 176–177
reversal sign, 176
skull fracture, 170
subarachnoid hemorrhage, 175
subdural hematoma, 172–174
newborn
disorders and birth trauma, 130
hemorrhagic diseases of, 127
non–traffic-related pedestrian
fatality, 5
nutritional deficiency, rickets
appearing as abusive
head trauma, 146–147

O
ocular injuries, pattern of, 102
ophthalmology
injuries as result of AHT, 109–110
macular hemorrhages, 107
papilledema, 107
residual findings, 109
retinal hemorrhages, 107, 108
SBS/AHT. See syndrome/abusive
head trauma (SBS/AHT)
optic nerve hemorrhages, 106
oral injuries, 111–115
avulsion, 116
bite marks. See bite marks
burns. See burns
multiple inflicted, 116
neglect, caries, 126
pattern injuries, 118
sexual abuse, 125–126
orbital cranectomy, 144
Osler-Weber-Rendu syndrome, 136
osteogenesis imperfecta, 97

P
papilledema, 107
parenchymal injuries, 14
pathology, 195–198
patterned injuries, 92–93, 118
pediatric intensive care unit
(PICU), 57
physical abuse, 25
physical outcomes
cognitive delay, 182–183
contact injury, 180
subdural hematomas with
enlarging head
circumference, 181
PICU. See pediatric intensive care
unit (PICU)
preretinal hemorrhage, 105

R
residual ataxia, 59
respiratory distress, 57–58
retinal hemorrhages, 20, 22, 42, 52,
56, 57–58, 71, 74–77,
101–102, 106–108, 186
retinal schisis cavity, 22
reversal sign, 169, 176
rib fracture, 77, 161
callus formation, 161
rotational injuries, 186–189
 morbid outcomes, 191–192
 respiratory distress, 57–58
 space-occupying subdural hematoma, 55–56
 subdural hematoma, 52–54

S
SAH. See subarachnoid hemorrhages (SAH)
SBS. See shaken baby syndrome (SBS)
SBS/AHT. See syndrome/abusive head trauma (SBS/AHT)
scalp, 8, 94
 contusions, 8
scanning electron microscopy (SEM), 113
scattered dot hemorrhages, 186
scleral depression, 109
SDH. See subdural hematoma (SDH)
SEM. See scanning electron microscopy (SEM)
sexual abuse
 ecchymosis, 126
 multiple injuries, 125
sexual assault, suction ecchymoses resulting from, 60, 98
shake impact syndrome, 11
shaken baby syndrome (SBS), 11, 22, 101, 198
shaking trauma, 210–218
SIDS. See sudden infant death syndrome (SIDS)
skeletal fractures, 94
skull fracture, 12, 19, 35, 36, 59–61, 77, 91, 159–160, 170
depressed, 171
 overlying, 171
slap marks, 89–91
space-occupying subdural hematoma, 55–56
spinal arteriovenous malformation, 136
strangulation, 176
subarachnoid hemorrhages (SAH), 2, 6, 14, 41, 43, 175
subarachnoid space, bleeding in, 14
 in AHT, 179
due to child abuse, 14
ecchymotic pattern of, 94
 with enlarging head circumference, 181
subdural hematomas, 44, 57–58, 74–77
subfalcine herniation, 184
subgaleal contusion, 6, 8
subgaleal hematoma, 28, 30
subgaleal hemorrhage, 12, 18, 21, 26, 33, 36
sudden infant death syndrome (SIDS), 30, 221
suspected metabolic disease, 165
sylvian fissure, 41
syndrome/abusive head trauma (SBS/AHT), 101–102
 hematoma with, 106
 seizures caused by, 105
 unresponsive victim of, 103–104
T
tentorial subdural hematoma, 175
“thunderclap” headache, 14
torn frenulum, 97
tracheobronchitis, 204
traffic-related pedestrian fatality, 3
transverse linear skull fracture, 9
traumatic axonal injury, 198
traumatic vaginal delivery, 167
twin-to-twin transfusion syndrome, 109
U
unintentional injuries
 drowning, 200
 fall from chair, 199
 motor vehicle crash, 200–201
V
vacuum extraction, 205
venous thrombosis, 158
visual outcomes, 184–185
 rotational injuries, 186–189